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Transition arising from a separated region of flow is quite common and plays an
important role in engineering. It is difficult to predict using conventional models
and the transition mechanism is still not fully understood. We report the results of
a numerical simulation to study the physics of separated boundary-layer transition
induced by a change of curvature of the surface. The geometry is a flat plate with a
semicircular leading edge. The Reynolds number based on the uniform inlet velocity
and the leading-edge diameter is 3450. The simulated mean and turbulence quantities
compare well with the available experimental data.

The numerical data have been comprehensively analysed to elucidate the entire
transition process leading to breakdown to turbulence. It is evident from the simu-
lation that the primary two-dimensional instability originates from the free shear in
the bubble as the free shear layer is inviscidly unstable via the Kelvin–Helmholtz
mechanism. These initial two-dimensional instability waves grow downstream with
a amplification rate usually larger than that of Tollmien–Schlichting waves. Three-
dimensional motions start to develop slowly under any small spanwise disturbance
via a secondary instability mechanism associated with distortion of two-dimensional
spanwise vortices and the formation of a spanwise peak–valley wave structure. Fur-
ther downstream the distorted spanwise two-dimensional vortices roll up, leading
to streamwise vorticity formation. Significant growth of three-dimensional motions
occurs at about half the mean bubble length with hairpin vortices appearing at this
stage, leading eventually to full breakdown to turbulence around the mean reattach-
ment point. Vortex shedding from the separated shear layer is also observed and
the ‘instantaneous reattachment’ position moves over a distance up to 50% of the
mean reattachment length. Following reattachment, a turbulent boundary layer is
established very quickly, but it is different from an equilibrium boundary layer.

1. Introduction
Although boundary-layer separation and transition occur in many engineering

flows of great practical importance, and understanding of the transition mechanisms
and the unsteady structures is still increasing, our ability to predict and control it is
still far from complete.

A free shear layer is formed as a laminar boundary layer separates owing to
curvature changes or an adverse pressure gradient. When the boundary layer separates,
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the free shear layer formed in the separation bubble is inviscidly unstable; the
instability at work could be the Kelvin–Helmholtz mechanism, similar to that in
the mixing layer and jet (Ho & Huerre 1984; Danaila, Dusek & Anselmet 1997;
Urbin & Metais 1997). Generally, the amplification is larger in the case of an
inviscid instability than is the case for viscous instabilities (Tollmien–Schlichting
waves) (Schlichting 1968; Ho & Huerre 1984). It has been shown theoretically and
experimentally by Gaster (1963) and more recently by Dovgal, Kozlov & Michalke
(1994) that the laminar part of the bubble is indeed acting as a spatial filter-amplifier
of upstream disturbances. It is believed that transition takes place owing to nonlinear
breakdown of spatially growing travelling waves in the separated free shear layer.
Dovgal et al. (1994) presents many results from theoretical (linear instability theory)
and experimental studies of instability and other transitional phenomena in pre-
separated and separated flows. Strong growth of the disturbances in the bubble is
expected, as argued by Dovgal et al. (1994), since local velocity profiles with an
inflection point exist. Such profiles are inviscidly unstable. However, the experimental
data and theoretical results cited in Dovgal et al. (1994) on the nonlinear stage,
especially breakdown to turbulence, are very limited and some aspects such as the
large-scale structures in the bubble, and the highly unsteady flow behaviour around
the mean reattachment region are not covered.

A flow is termed convectively unstable if the disturbances grow in space, convecting
away from the source, whereas it is called absolutely unstable if the disturbances grow
in time and spread everywhere. The possible existence of regions of absolute instability
in separation bubbles was first raised by Gaster (1963). Niew (1993), by carrying out a
linear wave packet analysis, showed that velocity profiles with strong reverse flow and
high enough Reynolds number exhibit the characteristics of absolute instability. This
was confirmed in a laminar separation bubble created by suction of fluid through the
upper boundary in the simulation by Alam & Sandham (1999), who analysed their
direct numerical simulation (DNS) data using Niew’s method. They demonstrated
that velocity profiles with strong reverse flow (more than 15%) exhibit characteristics
of absolute instability. DNS by Rist, Maucher & Wagner (1996) indicates strongly
that thin laminar separation bubbles are convectively unstable to short-wavelength
disturbances of small amplitude initiated upstream of the bubble.

Pauley, Moin & Reynolds (1990) studied numerically a two-dimensional separation
bubble created on a flat plate by a strong adverse pressure gradient and observed
vortex shedding with a dimensionless shedding frequency (Strouhal number) of about
0.007. They also demonstrated that the vortices are indeed formed as a result of
an inviscid instability of the detached shear layer in the separation bubble, and
the shedding frequency is consistent with linear stability analysis. Several articles
have also reported numerical simulations of a transitional separation bubble (Lin
& Pauley 1993a, b; Ripley & Pauley 1993; Wilson & Pauley 1995) and the results
compare well with experimental data even though the simulations were all two-
dimensional. Recently, DNS of a transitional separation bubble on a flat surface due
to aspiration through an opposite boundary by Spalart & Strelets (2000) suggests
that the Kelvin–Helmholtz instability is involved.

Many experimental studies have been carried out on high-Reynolds-number sepa-
ration/reattachment flow where the separation bubble is formed at a sharp corner, for
instance at the leading edge of a blunt plate with right-angled corners. The time-mean
velocity, pressure, turbulence intensity and Reynolds shear stress in such a separation
bubble are reported by several workers (Ota & Itasaka 1976: Ota & Narita 1978;
Kiya, Sasaki & Arte 1982). Measurements have also been made of the power spec-
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trum, the integral timescale, the cross-correlation between the surface-pressure and
velocity fluctuations, the reverse-flow intermittency and the phase velocities of fluctua-
tions (Hillier & Cherry 1981a, b; Kiya & Sasaki, 1983; Cherry, Hillier & Latour 1984).
The structure of the large-scale vortices in the turbulent separation bubble and the
unsteady reverse flow in the reattachment zone were studied by Kiya & Sasaki (1985)
using conditional-sampling techniques, and also by Cherry et al. (1984) with instan-
taneous smoke-flow visualization. Kiya & Sasaki (1985) inspected their space–time
vector fields carefully and interpreted the structures observed as hairpin vortices.

DNS of a separated turbulent boundary layer on a flat plate in an adverse pressure
gradient has been carried out recently by Na & Moin (1998). Their results show
that large-scale structures grow in the shear layer and agglomerate, impinging on the
wall and subsequently convecting downstream. The characteristic Strouhal number
based on the inlet displacement thickness deduced from the movement of the spanwise-
averaged reattachment point in their study ranges between 0.0025 and 0.01. Gartshore
& Savill (1982) have reported the irregular formation of large structures downstream
of reattachment for a normal flat-plate/splitter-plate combination, and have suggested
that the instantaneous reattachment position moves over a distance of up to 50% of
the time-averaged reattachment length. A similar observation was made by Eaton &
Johnston (1981) for the flow over a backward-facing step.

The average frequency of vortex shedding measured by several workers (Kiya &
Sasaki 1983, 1985; Cherry et al. 1984) is about 0.6–0.7U0/l, where U0 is the free-
stream velocity and l is the time-averaged bubble length. Hillier & Cherry (1981a) first
showed the existence of a low-frequency (0.12–0.2U0/l) unsteadiness in the separation
bubble which was later confirmed by Kiya & Sasaki (1983, 1985) and Cherry et al.
(1984). This low-frequency flapping of the separated shear layer was also observed in
the separation bubble behind a backward-facing step by Eaton & Johnston (1982).
The low-frequency flapping is not fully understood, but Eaton & Johnston (1982)
suggest that the likely cause of the motion is an instantaneous imbalance between the
entrainment rate from the recirculation zone and the reinjection near the reattachment
line. Tafti & Vanka (1991) have carried out three-dimensional numerical simulation of
the unsteady separated flow over a blunt plate held normal to a uniform stream. Their
results compare reasonably well with the experimental data of Kiya & Sasaki (1983)
and Cherry et al. (1984) despite the Reynolds number in their simulation being much
lower. Their calculation also captured the experimentally observed low-frequency
unsteadiness of the separation bubble. In addition, a selective high-frequency shedding
from the separated shear layer was present in their numerical results.

The present study employs large-eddy simulation to investigate separated boundary-
layer transition where the separation bubble is induced by a change of curvature of the
surface on a flat plate with a semicircular leading edge. Separated laminar boundary-
layer transition to turbulence is a very complex and many-sided problem which is
still far from being completely understood despite the information obtained from the
studies of separation and reattachment mentioned above, in which the separation is
induced differently from the present study. In particular, the information obtained so
far is not adequate for clarifying the entire transition process, large-scale structures
and the instability mechanisms. Hence, the objectives of this paper are:

(i) To elucidate the complete transition process from laminar separation to reat-
tachment and further downstream to turbulent boundary-layer flow, when separation
is produced on a flat plate owing to a surface curvature change. In particular, to iden-
tify the primary instability mechanism, to check if absolute instability exists locally
in the separation bubble and to show the process of nonlinear breakdown to turbu-
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lence and the subsequent development beyond reattachment, comparing turbulence
statistics with available experimental data.

(ii) To further clarify and identify the existence of any large-scale structures at
different stages in the transition process. In particular, to verify the existence of
hairpin vortices postulated by Kiya & Sasaki (1985) based on their experimental
results.

(iii) To quantify the unsteady movement of the instantaneous reattachment point,
and comparing with Gartshore & Savill’s (1982) suggestions that it can move over a
distance of up to 50% of the mean reattachment length.

(iv) To check for the existence of vortex shedding and, in particular, for the existence
of low-frequency shear-layer flapping reported experimentally in the separation bubble
formed on a blunt flat plate with right-angled corners (Hillier & Cherry 1981a; Kiya
& Sasaki 1983, 1985; Cherry et al. 1984) and for the high selective frequency shedding
reported numerically by Tafti & Vanka (1991).

2. Methods
Details of the mathematical formulation and numerical methods in general coor-

dinates used in the present study have been reported elsewhere (Voke & Yang 1998,
1999) and are very similar to those implemented by Kaltenbach & Choi (1995). A
brief description will be given below.

2.1. Covariant Navier–Stokes equations

The incompressible Navier–Stokes equations can be written in a form that is com-
pletely coordinate independent, or covariant:

∂tv
i = −∂jgijp/ρ+ (−vivj + 2νsij),j , (1)

where the strain rate is given by

sij = 1
2
(gikvj, k + gjkvi, k), (2)

gij is the metric tensor, and vi is the contravariant component of velocity. The
comma notation denotes covariant differentiation. We introduce J , the Jacobian of
the transformation and

ui = Jvi, (3)

which is proportional to the mass flux across the coordinate lines rather than the
contravariant velocities. The momentum equation becomes

∂tu
i = −Jgij∂jp/ρ+ ∂jS

ij + Γ i
kjS

kj , (4)

Sij = −uiuj/J + Jνsij . (5)

The Γ i
jk are the connection coefficients or Christoffel symbols, derived from the metric

tensor. The mass conservation equation is particularly simple using u variables, since

vi,i = ∂iv
i + Γ i

ijv
j = J−1∂i(Jv

i) = J−1∂iu
i, (6)

which gives

∂iu
i = 0. (7)

In the simulations we use ui as a variable except for computing sij , and the momentum
advancement is explicit using the second-order Adams–Bashforth scheme except for
the pressure term which is solved by a standard projection method. The pressure
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equation is discrete Fourier transformed in z (a very rapid computational task) to
obtain a set of decoupled equations that are solved by a multigrid technique with
line relaxation acting as a smoother. The spatial discretization is second-order central
differencing, with the geometric quantities computed to higher order in space in
advance of the simulation and stored, as necessary, at several distinct points of a
staggered mesh arrangement.

2.2. Dynamic subgrid-scale model in general coordinates

The finite-volume method with a staggered grid is used in the present study. The
method was originally developed for large-eddy simulation (LES) by Deardorff (1970)
and extended by Schumann (1973, 1975). The equations are integrated over control
volumes, equivalent to a convolution with a tophat filter, and hence the velocity
components at the corresponding grid points are the volume average. Any small-
scale motions (smaller than the mesh or control volume) are averaged out and are
accounted for by a subgrid-scale model. In the present study, a dynamic subgrid-scale
model in general coordinates is used and described below.

The filtered Navier–Stokes equations in the transformed plane is:

∂tvi = −gij∂j p̄/ρ+ (−vivj + 2νsij),j . (8)

The term (vivj) cannot be computed, and the difference between it and the part that
can be computed vi vj is the subgrid Reynolds stress τij , analogous to the familiar
Reynolds stress occurring in the time-average Navier–Stokes equations:

τij = (vivj)− vi vj . (9)

The subgrid Reynolds stress represents the effects of the subgrid motions on the
resolved fields of the LES. In contrast to the standard Reynolds stress whose length
and velocity scales are those of the entire turbulent flow field, the lengthscale and
velocity scale associated with the subgrid Reynolds stress can be deduced on a local
basis from the mesh and the resolved velocity field of the simulation. If the length-
scale is derived from the local mesh (∆) and the velocity scale is dictated by the
small-scale motions on the mesh, roughly equivalent to the largest subgrid velocities,
based on the local strain rate scalar s, we obtain the Smagorinsky (1963) model. In
general coordinates, it is as follows:

τij − gijgklτkl/3 = −2νssij , (10)

νs = C∆2s̄, (11)

s̄ =

√
2gijgklsij skl . (12)

C is predicted theoretically by Lilly (1966) to be 0.172.
This very simple model has been used widely and proved surprisingly successful,

although it is possible that its longevity is partly due to our failure to find any better
model for several decades. The model, in fact, has clear shortcomings. Tests of its
predictions against directly simulated flow fields show that the correlation between
the tensors in (10) is low. In shear flows, particularly wall-bounded flows, the model
is too dissipative and the value of C has to be decreased to a much lower value.
The reasons for this are now well understood, but this understanding has not led
to a breakthrough to a special model for shear flows. Rather, it gave rise to a new
approach in which the value of C , instead of being adjusted artificially based on
the experience of the simulator, is deduced from the LES itself. The approach was
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first proposed by Germano et al. (1991) and called a dynamic subgrid-scale model. It
allows the value of C to respond to local flow conditions, varying in time and space.

A base subgrid-scale model such as Smagorinsky is needed first. We then consider
what would happen if the same LES flow field were simulated on a coarser mesh,
effectively filtering the velocity field with a filter larger than that actually used for
the LES. This coarser filter, called the test filter, is usually chosen to be twice the
size of the mesh filter. In general coordinates, we work in the transformed plane and
take the filter to cover two cells rather than one. The test filter is represented by an
overhat in the twice-filtered Navier–Stokes equations:

∂tv̂i = −gij∂ĵ̄p/ρ+ (−v̂ivj + 2νŝij),j . (13)

The subtest-scale stress is defined as

T ij = (v̂ivj)− v̂i v̂j . (14)

We now apply the base (Smagorinsky) model at both filter scales, ∆ and 2∆:

τij − 1
3
gijgklτ

kl = −2C∆2s̄sij , (15)

T ij − 1
3
gijgklT

kl = −2C(2∆)2̂̄s ŝij . (16)

Using the Germano identity, we obtain, in general coordinates,

lij = v̂i vj − v̂i v̂j = T ij − τ̂ij , (17)

Lij = lij − 1
3
gijgkll

kl = T ij − 1
3
gijgklT

kl − (τ̂ij − 1
3
gijgkl τ̂kl) = −2CMij. (18)

The models for T ij and τij are substituted to define the tensor Mij:

Mij = (2∆)2 ̂̄s ŝij − ∆2 ̂̄ssij , (19)

thus,

C = − Lij

2Mij
. (20)

There are five separate equations for C since five components of each tensor on the
right-hand side are independent, the tensors are symmetric and traceless as in the
Cartesian case. The least-squares estimate of the optimal solution for C , following
Lilly (1992), is

C = − 〈L
ijgikgjlM

kl〉
2〈MijgikgjlMkl〉 . (21)

The angle brackets represent an average over the homogeneous direction z in which
C will not change. The resulting C is a function of time and the inhomogeneous
coordinates x and y. This is a standard procedure in Cartesian coordinates and details
can be found elsewhere (Germano et al. 1991; Lilly 1992). Ghosal et al. (1995) have
proposed formulations which do not suffer the limitation that one direction must be
statistically homogeneous.

The practical computation of C from equation (21) is considerably more complex
than in the Cartesian case, owing to the presence of the metric tensor coupling
the various components. An analogous derivation has been given for the generalized
equations conserving the Cartesian components of momentum (Jordan 1999;
Armenio, Piomelli & Fioretto 1999). A simple alternative that we have used for
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the simulation whose results are given below is:

C = − 〈L
ij〉

2〈Mij〉 , (22)

selecting one of the five equations to define C . This is justified for the case considered
in the next section where there is a clear principal strain rate and component of the
subgrid Reynolds stress, such as the 12 component in a shear flow:

C = − 〈L
12〉

2〈M12〉 . (23)

A preliminary sensitivity study in the present case of transitional flow over a curved
leading edge indicated that using the 12 component produced C values within 10%
of the C values obtained from the least-squares methods using all six components
whereas using other components such as 13 or 23 would produce very different C
values. The final justification, however, is the considerable cost saving in using the
dynamic procedure in this form, and the quality of the results.

Dynamic subgrid procedures have been applied successfully to a variety of flows in
the past decade. Their popularity with simulators derives from the way they produce
naturally the variation of C as solid walls are approached (making ad hoc damping
functions such as the well-known Van Driest type unnecessary), the variation of C
with Reynolds numbers (making LES of partially transitional flows a viable option)
and the variation of C with flow type (for instance for stratified and other special
flows). In the simulation of the transitional flow described below, the value of C
increases from zero as the flow becomes unstable and reaches normal LES levels
when the flow becomes fully turbulent. In fact, both Mij and Lij tend to zero in
laminar regions, making equations (21) and (22) poorly conditioned or singular.
This is not an academic point; the algorithm for computing C actually behaves
unpredictably in laminar or nearly laminar regions and must be modified to ensure
that C approaches zero in a sensible and well-defined manner. We do this by changing
equation (23) (for the M12 component) to

C = − 〈L12〉
2(〈M12〉+ ε)

, (24)

where ε is a selected small quantity, related, for instance, to a global average of M12.
Typically, ε will be of the order of 10−5 of the values of M12 occurring in turbulent
regions. It should be noted that in the present study the small value used for ε has
no effect in the important flow region where M12 is much larger.

The subgrid-scale model is inactive in the laminar region before transition occurs
and becomes active when significant growth of the disturbances starts in the separation
bubble, with the largest values of νs/ν, occurring around the reattachment point being
no greater than 8. The subgrid eddy viscosity reaches about 3 to 5 times the molecular
viscosity at the end of the computational domain.

2.3. Details of numerical computation

The fully general coordinate system around this geometry is needed since an or-
thogonal coordinate system has an inconvenient junction between a cylindrical and
a Cartesian mesh region at the critical point where the curved leading edge joins
the flat surface. This is the point at which the laminar flow separates and starts to
become unstable. Any disturbances in this region, including those with a numerical
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Figure 1. Computational domain and mesh.

origin, affect the flow and may lead to erroneous conclusions. A previous simulation
(Voke, Yang & Savill 1996) used an orthogonal coordinate system and suffered from
the problems indicated, including rapid and excessive growth of disturbances in the
separated shear layer whose origin could be traced to numerical effects. This does not
occur in the simulation with fully general curvilinear coordinates.

The overall geometry and meshing is shown in figure 1. The simulation uses 408
(streamwise, wrapped round the leading edge) by 72 (wall-normal, clustered in the
near wall region) and there are about 10 grid points within the 99% boundary-layer
thickness just before separation) by 64 (spanwise) meshes. The Reynolds number
based on the plate leading-edge diameter d is 3450. The inflow velocity U0 is uniform
and aligned with the plate. The circular inflow boundary and the lateral boundaries
are 8d distant from the surface, corresponding to a blockage ratio of 16. A free-slip
but impermeable boundary is applied on the lateral boundaries. On the outflow
boundaries, 9.5d downstream of the leading edge, a convective boundary condition is
applied. The spanwise dimension of the domain is 2d. Some simulations have been
performed using a spanwise dimension of 4d without any appreciable change in the
behaviour of the flow (less than 5% difference in terms of averaged statistics for both
mean and turbulence stress).

In terms of wall units based on the shear layer downstream of reattachment at
x/l = 2.5 (l is the mean separation bubble length), the streamwise mesh sizes vary
from ∆x+ = 10 to 30.5, while ∆z+ = 9 and at the wall ∆y+ = 1 (the distance from
the wall to the first cell location of u and w). The timestep used in the simulation
is 0.005d/U0. The averaged subgrid eddy viscosity is about 3.5 times the molecular
viscosity as the mesh resolutions are quite fine in most of the important flow regions
and not far away from what would be recognized as DNS.
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Statistics are gathered by averaging in time once the simulation is in its fully
developed, statistically stationary state and also over the span direction and on both
sides of the plate. The simulation is run for 40 000 timesteps to allow the transition and
turbulent boundary layer to become established, and the results presented below are
then gathered over a further 60 000 steps with a sample taken every 20 timesteps (3000
samples). Instantaneous flow fields and time traces of velocity components at certain
points are also stored during the simulation for subsequent visualization and analysis.

3. Results and discussion
The simulation, like the experiment with which we compare it, has a low level of

free-stream turbulence (< 0.2% in the experiment). In the simulation, pseudorandom
body forcing is imposed at about 0.192l (l is the mean reattachment length) upstream
of the blend point where the curvature changes (this is also the location of the
x-axis origin where flow starts to separate) to mimic the low-turbulence level in the
experiment. The amplitude of the forcing was initially selected to be 0.1% of the mean
dynamic head (0.5ρU2

0 ) and was adjusted after some test runs to make sure that the
turbulence level is about 0.1%. The simulation has also been performed with random
disturbances imposed for only a very short time at the start; the transition process is
found to be self-sustaining and the averaged results are very much the same as those
presented here, with (at worst) less than 3% difference in significant quantities.

3.1. Mean flow variables

An important parameter characterizing a separated/reattached flow is the time mean
position of the reattachment, i.e. time-averaged separation bubble length. The mea-
sured bubble length (J. Coupland, private communication 1994) is about 2.75d (d is
the leading-edge diameter) and the simulated bubble length is about 2.6d which is in
close agreement with the experimental data. The small difference is consistent with
the difference in blockage ratio in the simulation (16 : 1) and the experiment (34 : 1).

Figures 2(a) and 2(b) show the mean and r.m.s. fluctuating parts of the streamwise
velocity compared with experiment (Coupland, private communication) at seven
streamwise stations. The profiles are plotted as functions of y/l at corresponding
values of x/l where l is the mean reattachment length. As can be seen from figure 2(a),
excellent agreement between the experimental data and the simulated results has been
obtained for the mean streamwise velocity profiles. Differences in the free stream arise
entirely from the differences in the blockage ratio.

The agreement for the r.m.s. fluctuations, as shown in figure 2(b), is also good,
except that the simulation shows higher peaks of u′ occurring closer to the wall at
two stations in the bubble, especially at x/l = 0.66 where the discrepancy between
the peak values is about 25%, but lack of experimental data (taken with a single
hot-wire probe) in the near wall region makes detailed comparisons difficult. After
the reattachment, the agreement is much better.

Figures 2(c) and 2(d) show the r.m.s. values of the vertical and spanwise fluctuations,
but unfortunately there are no corresponding measurements to compare with. It is
clear from figures 2(b), 2(c) and 2(d) that maximum fluctuations occur just before
the mean reattachment point, with maximum values for u′, v′ and w′ of about 24%,
18% and 19%, respectively. This is also true for the shear stress u′v′, as can be seen
from figure 2(e). Further downstream, the turbulence intensity reduces and reaches a
stable value of about 15%, a typical turbulent boundary-layer level. The maximum
r.m.s. values at about the mean reattachment point may be attributed to the unsteady
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Figure 2. For caption see facing page.
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large-scale movements and break-up in this region; these will be further explored in
the following sections.

3.2. Transition mechanisms

3.2.1. Description of the transition process

The boundary layers develop in the densely meshed regions on either side of the
plate, and are fully turbulent well before they reach the two outflow boundaries.
The layers on either side of the plate are not symmetric and can be quite different
instantaneously, just as they would be in reality (the time average flow field is
symmetric on the two sides of the plate, but the instantaneous flow field may not be).
The transition process can be clearly seen in figure 3 which shows the instantaneous
spanwise vorticity at various times in the (x, y)-plane at an arbitrary z-(spanwise)
plane. In the first half of the bubble a free shear layer develops and spanwise
vortices forms; these are inviscidly unstable and any small disturbances present
grow downstream with an amplification rate larger than that in the case of viscous
instabilities. Further downstream, the initial spanwise vortices are distorted severely
and deform, leading to streamwise vorticity formation associated with significant
three-dimensional motions, eventually breaking down at about the reattachment
point and developing rapidly into a turbulent boundary layer.

3.2.2. Position of initial unsteadiness

The flow is laminar and two-dimensional before the separation and even in some
regions just after the separation, as can be seen from figure 4 which shows the
instantaneous values of the three velocity components at three arbitrary times in a
spanwise plane along the streamwise direction, starting from the blend point where
the separation occurs. It can be seen clearly that the profiles at three different times
are virtually the same when x/l < 0.15, with a zero value for the W velocity at
different y-values, indicating that the flow is two-dimensional and steady. The profiles
indicate that the initial unsteadiness occurs at about x/l = 0.15. The instantaneous
spanwise velocity starts to develop slowly when x/l > 0.15 and remains small until
x/l = 0.5, when significant three-dimensional motions start to develop very quickly
and violently, with maximum values reaching almost 40% of the streamwise velocity
in the free stream.

The profiles for the U and V velocity components show the same kind of pattern,
with the initial unsteady motions observed to develop slowly and starting to develop
very rapidly and violently at about x/l = 0.5. This may indicate that in the region
from x/l = 0.15 up to x/l = 0.5 the disturbances grow linearly, with nonlinear rapid
growth and breakdown starting from the region x/l = 0.5 onward.

The first appearance of unsteadiness can be further confirmed by looking at
figures 5(a) to 5(c) which show the instantaneous streamwise velocity profile in a
single spanwise plane at three streamwise locations and at three different times.
The discrepancy between velocity profiles at three different times can barely be
observed at x/l = 0.2 in figure 5(a) as the difference between the velocity at different
times is still very small compared with the velocity itself (although figure 4 does
indicate that the initial unsteadiness occurs in the region between x/l = 0.15 and

Figure 2. (a) Mean axial velocity, (b) r.m.s. streamwise velocity fluctuation u′, (c) r.m.s. vertical
velocity fluctuation v′, (d) r.m.s. spanwise velocity fluctuation w′ and (e) r.m.s. profiles of shear stress,
measured at seven streamwise positions measured from the blend point. Left to right, x/l = 0.22,
0.44, 0.66, 1.09, 1.27, 1.64, 2.55. ——, LES; � experimental data.
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Figure 3. Instantaneous spanwise vorticity in the (x, y)-plane.

x/l = 0.2). The discrepancy between the instantaneous profiles grows downstream and
becomes clearly apparent at x/l = 0.4, as shown in figure 5(b). Further downstream
at x/l = 0.8, as shown in figure 5(c), the profiles are very distorted owing to very
unsteady large-scale motions inducing violent fluctuations.

The growth of disturbances can be seen in figure 6, showing the peak r.m.s. values
of the three velocity components along the x-coordinate starting from the blend
point where the separation occurs. The r.m.s. values are almost zero at separation



Large-eddy simulation of boundary-layer separation and transition 317

x / l

–0.4

0

0.4

0.8

1.2

0 0.5 1.0 1.5

at t1
t2
t3

0 0.5 1.0 1.5

0 0.5 1.0 1.5

–0.3

–0.15

0

0.15

0.3

at t1
t2

t3

at t1
t2
t3

–0.4

–0.15

0

0.15

0.3

W
U0

 V
 U0

U
U0

Figure 4. Instantaneous velocity profiles at y/l = 0.015.

and start to grow slowly in the first half of the bubble, with the peak r.m.s. values
of u′ and w′ reaching only about 1.5% at 25% bubble length. The peak r.m.s.
value of v′ increases more slowly up to 1.5% at about half of the bubble length.
However, the fluctuations increase very rapidly in the second half of the bubble,
with w′ and v′ lagging behind u′ slightly, reaching a maximum value just before the
mean reattachment point, indicating that three-dimensional motion and nonlinear
interaction lead to breakdown to turbulence in the second half of the bubble, from
x/l = 0.5 to x/l = 1.0.

It is evident from the figures discussed above that the flow starts to become unsteady
in the region from x/l = 0.1 to x/l = 0.2 and significant growth of the disturbances
starts at about x/l = 0.5.

3.2.3. Vortex shedding and movement of instantaneous reattachment

A reattachment point or line in a steady laminar separation bubble can be defined
as the position where the skin friction coefficient is zero. For the current transitional
separated boundary-layer flow, the time average is similar to a steady laminar sep-
arated flow, but with a different bubble shape and separation length. This can be
seen from figure 7(a), which shows clearly one separation bubble starting from the
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Figure 5. Instantaneous streamwise velocity profiles at (a) x/l = 0.2, (b) 0.4, (c) 0.8.

blend point with a smooth flow field, reattaching at about 2.6d. However, this is not
representative of the instantaneous flow field as the flow becomes highly unsteady
around the mean reattachment point. There can be several small bubbles or vortices
formed, and vortex shedding may occur. We can confirm from figures 7(b), 7(c) and
7(d), showing instantaneous flow fields in the (x, y)-plane, that the instantaneous
reattachment point is indeed highly variable with time. The instantaneous velocity
vectors in an (x, y)-plane presented by Tafti & Vanka (1991) also show very similar
flow features. Vortices, formed in the separated free shear layer owing to inviscid
linear instability, shed downstream, agglomerate and impinge on the wall, collapse
and lead to the breakdown to turbulence.

The unsteady movement of the instantaneous reattachment position and the ir-
regular formation of large structures downstream of reattachment for a normal flat-
plate/splitter-plate combination have been reported by Gartshore & Savill (1982).
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A similar observation was made by Eaton & Johnston (1981) for the flow over a
backward-facing step. Gartshore & Savill (1982) suggested that the position moves
over a distance of up to 50% of the time-averaged reattachment length. Quantitative
information is given in figure 8, which shows the variation of the instantaneous bubble
length normalized by the mean bubble length. It can be seen that the instantaneous
bubble length (the last instantaneous reattachment) fluctuates greatly. The maximum
value is about 1.26l and the minimum value is only about 0.73l. lmax − lmin = 0.53l,
which is 53% of the averaged bubble length.

The measured average shedding frequency is about 0.6–0.7U0/l (Kiya & Sasaki
1983, 1985; Cherry et al. 1984) as mentioned earlier. To further clarify the vortex
shedding frequency in the present study, power spectra of spanwise-averaged u′ at
y/l = 0.04 and three streamwise locations at x/l = 0.35, 0.7 and 0.96 are shown
in figures 9(a)–9(c). Vortex shedding is present at x/l = 0.35 and is not periodic
with a single frequency. The shedding process seems to happen within a range of
frequency of roughly 0.52U0/l–1.14U0/l (the Strouhal number, hereinafter referred to
as St, is 0.005–0.011 based on the free-stream velocity and displacement thickness just
before the separation). The averaged frequency can be estimated at about 0.82U0/l
(St = 0.0079). In addition, there is also a peak at lower frequency, 0.104U0/l (St =
0.001), as shown in figure 9(a) at x/l = 0.35, which may correspond to the measured
low-frequency flapping of the free shear layer (Hillier & Cherry 1981a; Kiya &
Sasaki 1983, 1985; Cherry et al. 1984). The pictures are similar at x/l = 0.7 and
0.96 except that the low-frequency peak is not as apparent as at x/l = 0.35. The
shedding frequency range seems to become slightly wider from 0.34U0/l to 1.04U0/l
(St is 0.00327–0.01) and the average frequency is about 0.72U0/l (St = 0.0069). The
predicted dominant frequency, 0.72U0/l–0.82U0/l (St is 0.0069–0.0079), is slightly
larger than the measured value of 0.6U0/l–0.7U0/l, but acceptable considering the
geometry is different between the experiments (blunt flat plate with right-angled
corners) and the present simulation (flat plate with a semicircular leading edge). The
DNS results of a separated turbulent boundary layer by Na & Moin (1998) show
similar ranges of Strouhal number from 0.0025 to 0.01, based on the inlet displacement
thickness. The DNS of backward-facing step flow by Le, Moin & Kim (1997) also
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shows that the Strouhal number corresponding to the dominant frequency is about
0.007 based on the inlet displacement thickness.

The so-called low-frequency flapping has been observed experimentally (Hillier &
Cherry 1981a; Eaton & Johnston 1982; Kiya & Sasaki 1983, 1985; Cherry et al.
1984) and captured numerically (Tafti & Vanka 1991). However, the cause is still
not fully understood. It is suggested by Eaton & Johnston (1982) that the probable
cause of the motion is an instantaneous imbalance between the entrainment rate from
the recirculation zone and the reinjection near the reattachment line. Tafti & Vanka
(1991) postulate that it is caused by the periodic enlargement and shrinkage of the
separation bubble. We think it is mainly due to another vortex-shedding phenomenon
that occurs on a larger timescale in addition to the usual vortex shedding. On
inspecting figures 7(b) and 7(c) carefully, it is seen that there can be several small
bubbles formed inside or sitting on the tail of a big separation bubble. The vortex
shedding we normally refer to is associated with the individual shedding of these
small bubbles, which would not have a great impact on the big bubble, although
the last instantaneous reattachment will change accordingly. However, it is possible
that several small bubbles may occasionally form a larger one, or at some stage
a relatively large bubble may form instead of several small ones, as indicated in
figure 7(d). This relatively larger bubble collapses and sheds downstream, which
will have a greater impact on the big bubble. The two topological structures of
the separation bubble associated with the onset of vortex shedding are sketched in
figure 10. The instantaneous reattachment length according to figure 10(b) must be
shorter just after the shedding of the relatively big bubble compared with the case in
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(a) (b)

Figure 10. Two different topological structures of a separation bubble associated with the onset of
vortex shedding: (a) normal shedding; (b) shedding responsible for the low-frequency flapping.

figure 10(a) and this can be confirmed in figure 8. It is evident that the instantaneous
bubble length reduces to a much lower value from time to time, indicating that the
bubble does shrink dramatically at times. The time interval between the lower peaks
(indicated by circles) varies from 4.8 to 7.2, corresponding to a characteristic frequency
from 0.072U0/l to 0.108U0/l (St from 0.0007 to 0.001), and the lower-frequency peak
observed in figure 9 is indeed in this range.

3.2.4. Primary instability mechanism

It is well known that the necessary condition for a flow to be inviscidly unstable to
small disturbances is that the velocity profile has an inflection point. This theorem was
first formulated by Rayleigh (1880); later, Tollmien (1935) showed that the existence
of an inflection point is also a sufficient condition for instability. The profiles shown
in figures 5(a)–5(c) have an inflection point and hence are inviscidly unstable. To
further clarify this, the present simulated results will be compared with inviscid linear
stability analysis.

Consider a free shear layer between two streams, u1 and u2 which has, like a
mixing layer, two distinct velocity scales: the velocity difference ∆u = u2 − u1 and
the average velocity ū = 1

2
(u1 + u2). The free shear layer can be characterized by the

vorticity thickness δw = ∆u/(du/dy)max which defines a characteristic lengthscale and
the velocity ratio λ = ∆u/(2ū) which measures the magnitude of the velocity difference
across the layer. When λ = 0, there is no shear. Monkewitz & Huerre (1982) have
carried out inviscid analysis of parallel flow using the parallel tanh profile and
found that the most amplified non-dimensional frequency, ωmax = ( 1

4
δw)(2πf/ū), is

not strongly dependent on either λ or the profile shape and changes only from
0.222 to 0.21 when λ varies from 0 to 1. In the unsteady region of free shear in
the separation bubble, λ and the vorticity thickness change with streamwise distance
and, hence, the non-dimensional shedding frequency ωmax varies. Pauley et al. (1990)
computed from their two-dimensional simulation results that the non-dimensional
frequency ωmax is indeed about 0.21 at the streamwise location of the centre of the
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time-averaged separation bubble, where the new shed vortices are observed to form.
In the present study, the most amplified non-dimensional frequency ωmax is calculated
at several streamwise locations and the values change from 0.231 to 0.206. This close
agreement between the simulated results and the inviscid linear stability analysis has
been obtained for different values of λ, corresponding to several different streamwise
locations, showing that the free shear layer in the bubble is unstable via an inviscid
instability mechanism.

It is evident that the vortices are indeed formed as a result of the inviscid instability
of the free shear layer, as the shedding frequency is consistent with the inviscid
linear stability analysis. Kiya & Sasaki (1985) indicate from their separated bounday-
layer study that the large-scale vortices originate from a successive amalgamation of
vortices formed in the separated shear layer through the Kelvin–Helmholtz instability.
In mixing-layer and jet-flow studies (Ho & Huerre 1984; Danaila et al. 1997; Urbin &
Metais 1997) the mechanism is also believed to be the Kelvin–Helmholtz instability.
However, sufficient and detailed evidence has not been given in these studies to show
that the instability mechanism at work is indeed the Kelvin–Helmholtz instability. In
order to clarify whether the instability of the free shear layer in the present study
is the Kelvin–Helmholtzs instability, we consider the Kelvin–Helmholtz instability in
more detail.

Let two uniform incompressible inviscid fluids of densities ρ1 and ρ2 and velocities
U1 and U2 be separated by a horizontal boundary at y = 0. Let the density ρ1 of the
upper fluid be less than the density ρ2 of the lower fluid so that the arrangement is a
stable one when U1 and U2 are zero. For a given difference in velocity U2 − U1, no
matter how small it is, instability occurs for all wave-numbers larger than a critical
value (for disturbances of sufficiently small wavelengths) or it can be stated that, for a
given wavenumber, instability occurs if the velocity difference U2 −U1 is larger than
a critical value. This is the Kelvin–Helmholtz instability (Chandrasekhar 1961; Craik
1982). It may be said that the Kelvin–Helmholtz instability arises from the crinkling
of the interface by the shear which is present, and this crinkling occurs even for the
smallest difference in the velocity of the two fluids.

The question that must be answered is whether the Kelvin–Helmholtz instability is
due to the sharp discontinuities in ρ and U which have been assumed in its derivation.
Chandrasekhar (1961) considered the case of continuous variation of U and certain
distribution of ρ (characterized by the Richardson number) and concluded from his
inviscid linear stability analysis that, for any values of the Richardson number, there
are always bands of wavelengths for which the Kelvin–Helmholtz instability occurs.
In particular, when the Richardson number is zero, i.e. for constant density, the
condition for the Kelvin–Helmholtz instability to occur is 0 < Kh < 1.2785 where
K is the wave number and h is the shear layer thickness. In the present study, the
shear layer thickness at the region where the unsteadiness first becomes apparent (at
about x/l = 0.2) is 0.0577l, and hence the unstable region for K is 0 < K < 22.158/l.
In other words, the Kelvin–Helmholtz instability will not occur in the present study
for wavenumbers larger than 22.158/l, or wavelength smaller than 2π/K = 0.2836l.
From figure 9(a), the characteristic frequency varies from about 0.52U0/l to 1.14U0/l
and the wave speed c is equal to the velocity at the critical layer, U(Yc), i.e. the
streamwise velocity at the inflection point where d2U(yc)/dy

2 = 0, which is about
0.42U0 at x/l = 0.2. Therefore, the maximum wavenumber from the simulated results
is Kmax = 2πfmax/c = 17.05/l, corresponding to a wavelength of 0.368l, which satisfies
the Kelvin–Helmholtz instability criterion for the present study (0 < K < 22.158/l).

To check that this criterion is satisfied in the region between x/l = 0.2 and x/l = 0.5
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where the disturbance starts to grows significantly, let us consider another location,
x/l = 0.45. The shear-layer thickness at x/l = 0.45 is about 0.073l and, hence, the
unstable region for K is 0 < K < 17.5/l. The wave speed at x/l = 0.45 is 0.584U0 and,
hence, the maximum wavenumber is kmax = 2πfmax/c = 12.3/l which indeed satisfies
the Kelvin–Helmholtz instability criterion (0 < K < 17.5/l). Several locations in the
range 0.2 < x/l < 0.45 have also been checked and the maximum wavenumbers are
all within the unstable region according to the Kelvin–Helmholtz instability criterion
for constant density and continuous variation of U velocity (Chandrasekhar 1961).
Thus, it can be concluded that the free shear layer in the separation bubble is likely
to become inviscidly unstable via the Kelvin–Helmholtz instability mechanism.

The amount of reverse flow has also been calculated at several locations in the
bubble to check if there exists an absolute instability region, as Alam & Sandham
(1999) demonstrated that velocity profiles with strong reverse flow (more than 15%)
exhibit the characteristics of absolute instability. It has been found that the maximum
reverse flow in the present study is smaller than 3% and, hence, on the assumption
that our bubble behaves similarly to Alam’s there is no absolute instability region
existing in the separation bubble.

3.2.5. Development of three-dimensional motions, structures and breakdown to
turbulence

As shown in figure 6, significant growth of disturbances starts at about x/l = 0.5,
u′ and w′ seem to develop soon after the separation point very slowly until x/l = 0.2
where u′ starts to develop slightly more quickly. u′ and w′ are more or less of the
same order of magnitude, while v′ is an order of magnitude smaller and its growth
also lags behind the other two when x/l < 0.45. Significant growth of all disturbances
(u′, v′, w′) starts at around and after x/l = 0.45.

Another way of monitoring the development of three-dimensional motions is to see
how the instantaneous spanwise velocity develops. Figure 4 shows the instantaneous
spanwise velocity component against x/l at y/l = 0.015. It can be seen clearly from
these figures that the spanwise instantaneous velocity is almost zero when x/l < 0.15
and starts to develop very slowly to a small value, while significant three-dimensional
motions start to develop rapidly only when x/l > 0.5. This can be further confirmed in
figures 11(a)–11(f), showing the variations of the instantaneous streamwise velocity
along the spanwise direction at six streamwise locations, x/l = 0.1, 0.2, 0.3, 0.4,
0.5 and 0.6. At x/l = 0.1, the streamwise velocity profile is almost flat at all the
vertical heights, indicating that it is two-dimensional flow. Slight distortion can be
observed at x/l = 0.2 and develops slowly until x/l = 0.5 when significant three-
dimensional motions are observable. These develop rapidly afterwards, figure 11(f) at
x/l = 0.6, indicating that a three-dimensional state is achieved well before the mean
reattachment. It can be seen from these figures that a peak–valley wave structure
is present; the peak and valley values of the velocity profile at different spanwise
locations indicate the formation of longitudinal vortices. Peaks form when fluid with
larger streamwise velocity is pushed down from the layer above, and valleys when the
fluid with lower velocity is pushed up from the layer below.

More detailed qualitative information regarding the development of three-

Figure 11. Instantaneous streamwise velocity profiles at (a) x/l = 0.1; bottom to top, y/l = 0.008,
0.026, 0.04; (b) x/l = 0.2; bottom to top, y/l = 0.008, 0.035, 0.05; (c) x/l = 0.3; bottom to top,
y/l = 0.018, 0.045, 0.06; (d) x/l = 0.4; bottom to top, y/l = 0.022, 0.045, 0.06; (e) x/l = 0.5; bottom
to top, y/l = 0.035, 0.055, 0.067; (f) x/l = 0.6; bottom to top, y/l = 0.035, 0.06, 0.08.
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dimensional motions can be seen in figure 12, showing velocity vectors on the
(x, z)-plane at several streamwise locations x/l = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.8. At
x/l = 0.1 the flow is still two-dimensional and the spanwise velocity is tiny. Three-
dimensional motions are barely observable at x/l = 0.2 and develop slowly, as shown
at x/l = 0.3 and x/l = 0.4. Noticeable three-dimensional motions appear at x/l = 0.5
and develop much more quickly afterwards; see the figures at x/l = 0.6, 0.7 and 0.8.

Figure 13 shows the three-dimensional contours of fluctuating pressure at three dif-
ferent times. It can be seen from figure 13(a) that two-dimensional vortical structures
exist at the early stage of the bubble and then become distorted owing to three-
dimensional motion setting in. Hairpin vortices form further downstream around or
after the reattachment point, as shown in figures 13(b) and 13(c), and eventually break
down to turbulence around or after the reattachment point. The spanwise distance
between the ends of the hairpin vortices is about 0.31, which is roughly the same as
the Kelvin–Helmholtz wavelength in the present study. This is worthy of note as it is
shown by Roshko (1981) that the spanwise distance between the streamwise vortices
in the transition region of an initially laminar mixing layer is approximately equal to
the Kelvin–Helmholtzs spacing. Tafti & Vanka (1991) conclude from their numerical
study of the unsteady separated flow over a blunt plate held normal to a uniform
stream that the separation bubble is characterized by large coherent structures in the
form of spanwise vortices. They are three-dimensional in nature with their approxi-
mate spanwise size between 20% to 30% of the mean reattachment length, similar to
that observed in the present study.

The hairpin vertical structures identified in the present study also confirm the ideas
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Figure 13. Contours of fluctuating pressure showing vortex cores at three times.

put forward by Kiya & Sasaki (1985) from their experimental study that hairpin
vortices exist in the separated flow region. Large-scale structures exist not only in
transitional separated flow but also in turbulent separated flow as reported by Na &
Moin (1998) in their DNS of a separated turbulent boundary layer on a flat plate
due to an adverse pressure gradient. Large-scale structures are clearly identified in the
transition process associated with the separation bubble and go through several stages:
two-dimensional, distorted three-dimensional, and hairpin vortices, a breakdown stage
and eventually turbulence after the reattachment point in the present study.

3.2.6. Boundary-layer development after reattachment

It is noted that the boundary layer downstream of reattachment is initially quite
different from an equilibrium turbulent boundary layer. It takes about seven bubble
lengths for the log law to be re-established, as shown numerically by Alam &
Sandham (1999) in their DNS study of a laminar separation bubble on a flat plate
due to a adverse pressure gradient. Castro & Epik (1999) demonstrate experimentally
in the boundary layer behind a separation bubble on a flat plate with a blunt
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leading edge that an energetic outer layer is decaying slowly, preventing the inner
layer from attaining its canonical form. In the inner region, although the log law
is eventually re-established, the turbulence structure has not developed normally
even by 70 boundary layer thicknesses downstream. This has been also observed in
experiments and simulations of the backward-facing step flow (Bradshaw & Wong
1972; Le et al. 1997) indicating that many features of the developing boundary layer
are qualitatively independent of the precise nature of the separation and reattachment
process. The discussion in the present study will not focus on the re-establishment of
the log law layer, as previous studies have clearly demonstrated this point, and also
the computational box used in the present study is not long enough for the inner
layer to develop into its canonical form. We consider that the entire transition process
may involve a further significant stage of instability downstream of reattachment and
will elucidate the boundary-layer development process just after reattachment. An
earlier study (Voke & Yang 1999) indicated that the boundary-layer development
immediately after the reattachment is reminiscent of that found in simulations of flat-
plate boundary-layer bypass transition under free-stream turbulence (Voke & Yang
1995). In order to clarify this, a more detailed comparison with the bypass transition
will be presented here.

Figure 14 shows the skin friction coefficient after the mean reattachment. (Rex
in the present study is based on the free-stream velocity and the distance from the
blend point where the separation occurs). For comparison, the Rex in the present
case is shifted about 0.83 towards the higher value, to the location where the friction
coefficient starts to increase in the bypass transition study (Voke & Yang 1995). The
friction coefficient shoots up very rapidly (compared with the bypass transition case)
to a higher value within a very short distance after reattachment, but then drops
down relatively slowly to a level comparable with that of the turbulent boundary
layer in the bypass transition case (though still higher) and may take much longer to
recover and reach the same level, as discussed above. A similar picture is observed
in figure 15, where the shape factor drops very quickly to a lower value. (Rex in the
present study is shifted about 0.83 again to the location where the shape factor starts
to drop quickly in the bypass transition case.) Figure 16 shows the u′2 production
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Figure 15. Shape factor. ——, current results after reattachment;
– – –, bypass transition on a flat plate.
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Figure 16. Normalized production term u′v′dU/dy. ——, current results at x/l = 0.44, 1.09, 1.64;
– – –, bypass transition at x = 45, 95, 195 mm.

term u′v′dU/dy at the same three locations; in the bypass transition study this term
plays an important role. As can be seen from figure 16, in the bypass transition case,
turbulence production mainly occurs near the wall and the peak becomes closer to
the wall from the disturbed laminar layer (x = 45 mm) through the transition region
(x = 95 mm) to the turbulent boundary layer (x = 195 mm). In the present study,
turbulence production in the bubble is concentrated in the free shear layer region and
even just after the reattachment still mainly occurs in the outer layer. The wall shear
layer starts to build and it can be seen that at x/l = 1.64 the near wall peak is well
established. The peak in the outer layer is still visible at this location which confirms
that the outer layer is indeed decaying slowly, as concluded by Castro & Epik (1999).

The fact that some form of turbulent boundary layer is established very rapidly,
within a short distance after reattachment, is indicated by the skin friction coefficient
and shape factor shown above. The layer will take much longer to attain its canonical
form, i.e. for the log law layer and the inner layer turbulence structure to re-establish.
The evidence is insufficient to support the scenario that it goes through a ‘bypass
transition stage’ (Voke & Yang 1999) because the instantaneous flow around the mean
reattachment point is highly unsteady and turbulent, though it may be dominated
mainly by large-scale two- and three-dimensional vortical structures formed in the free
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shear layer. These large-scale structures start to break down into small-scale structures
at around the mean reattachment point and some form of turbulent boundary layer
develops rapidly afterwards. It clearly takes some time for the small scale turbulence
structure to develop in the inner layer, in interaction with the outer-layer structures.

4. Discussion and concluding remarks
The study of separated boundary-layer transition on a flat plate with a semicircular

leading edge has been carried out numerically and the entire transition process
leading to breakdown to turbulence has been elucidated and visualized using the
LES data. From detailed analysis, it has been shown that the free shear layer
formed in the separation bubble is inviscidly unstable via the Kelvin–Helmholtz
instability mechanism, and the unsteadiness starts from about x/l = 0.15. These initial
two-dimensional instability waves grow downstream linearly, with slow development
of three-dimensional motions via a secondary instability mechanism responsive to
any small spanwise disturbance. Further downstream the distorted spanwise two-
dimensional vortices roll up, leading to streamwise vorticity formation, and nonlinear
interaction starts once the fluctuation level reaches a threshold level. Significant three-
dimensional motions develop much more rapidly at about x/l = 0.5, with u′, v′ and
w′ growing at a much higher rate compared with the early slow development stage
and reaching maximum values just before the mean reattachment point (figure 6).
Breakdown to turbulence occurs around the mean reattachment point and the flow
develops into a turbulent boundary layer rapidly after the reattachment, though it
takes much longer for the log law layer and the inner region turbulence structures
to develop. Vortical structures (two-dimensional, three-dimensional hairpin vortices)
have been identified at various stages of the transition process. A peak–valley spanwise
wave structure is also found in the separation bubble.

Vortex shedding from the separated shear layer has been observed. This is not
periodic in the sense that a unique frequency exists, and the instantaneous reattach-
ment position moves over a distance up to 53% of the mean reattachment length.
This large-scale movement, and especially the power spectrum at three streamwise
positions, have shown that the characteristic shedding frequency varies in the range
∼ 0.35U0/l–1.14U0/l (St = 0.0034–0.011. The average frequency can be estimated
at about 0.77U0/l (St = 0.0074), while the measured dominant shedding frequency
is about 0.65U0/l (cf. Kiya & Sasaki 1983, 1985; Cherry et al. 1984). It is demon-
strated in the present study that the so-called low-frequency flapping phenomenon
(0.125U0/l–0.2U0/l) observed in several experimental studies of separated flow over
a blunt plate (Kiya & Sasaki 1983, 1985; Cherry et al. 1984) may be associated with
a larger shrinkage of the bubble caused by a ‘big vortex shedding’ which occurs at a
lower frequency. In addition, the high selective frequency shedding (4.2U0/l) reported
numerically by Tafti & Vanka (1991) is not observed in the present study.

There are many different routes to transition depending on many factors. In the
present study of a separated boundary layer, transition starts with Kelvin–Helmholtz
instability; three-dimensional motions develop initially at a slow rate associated with
peak–valley wave structures via a secondary instability process, until about x/l = 0.5,
where nonlinear interactions take a central role and significant three-dimensional
motions start to develop. The breakdown stage is characterized by the irregular
shedding of large-scale vortices associated with free shear-layer roll-up and, hence,
the formation of hairpin vortices. Large vortical structures travel downstream and
impinge on the wall, where a turbulent boundary layer forms rapidly, but it takes
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quite a long distance downstream (certainly beyond the current computational box)
for the log law and inner turbulence structures to develop as reported by many studies.
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